УТВЕРЖДАЮ

Директор Федерального государственного бюджетного учреждения науки Институр нефтегазовой геологии и геофизики им. А.А. Трофимука Сибирского отделения Российской академии наук д.ф.-м.н., член-корреспондент РАН Глинских Вячеслав Николаевич

17 октября 2025 г.

ЗАКЛЮЧЕНИЕ

Федерального государственного бюджетного учреждения науки Института нефтегазовой геологии и геофизики им. А.А. Трофимука Сибирского отделения Российской академии наук

Диссертация «Строение приповерхностных путей разгрузки гидротерм на примере термальных полей Курило-Камчатской островной гряды по данным геоэлектрики и геохимии» на соискание ученой степени кандидата геолого-минералогических наук по специальности 1.6.9 — «Геофизика» выполнена в лаборатории эколого-экономического моделирования техногенных систем Федерального государственного бюджетного учреждения науки Института нефтегазовой геологии и геофизики им. А.А. Трофимука Сибирского отделения Российской академии наук (ИНГГ СО РАН).

Мишенина София Павловна, 1989 года рождения, гражданка России, окончила геологический факультет Московского государственного университета им. М.В. Ломоносова по направлению «Геология» по профилю «Геология» в 2010 г., в 2012 г. получила степень магистра геологии по направлению 02.03.00 «Геология» в Новосибирском национальном исследовательском государственном университете.

В 2018 г. Мишенина С.П. окончила очную аспирантуру Федерального государственного бюджетного учреждения науки Института нефтегазовой геологии и геофизики им. А.А. Трофимука Сибирского отделения Российской академии наук (ИНГГ СО РАН) по специальности 05.06.01 «Науки о Земле» по профилю 25.00.10 «Геофизика, геофизические методы поисков полезных ископаемых».

Удостоверение о сдаче кандидатских экзаменов и справка об окончании аспирантуры выданы в 2018 г. Федеральным государственным бюджетным учреждением науки Институтом нефтегазовой геологии и геофизики им. А.А. Трофимука Сибирского отделения Российской академии наук (ИНГГ СО РАН).

В период подготовки диссертации соискатель Мишенина София Павловна работала инженером в лаборатории электромагнитных полей с 2013 по 2015 год, лаборантом в лаборатории геодинамики и палеомагнетизма с 2015 по 2019 год, младшим научным сотрудником в лаборатория эколого-экономического моделирования техногенных систем с 2018 по 2019 год, в лаборатории эколого-экономического моделирования техногенных систем ИНГГ СО РАН в должности научного сотрудника с 27.12.2019 по настоящее время.

Научный руководитель — доктор технических наук, профессор Ельцов Игорь Николаевич, главный научный сотрудник лаборатории электромагнитных полей

ИНГГ СО РАН, заведующий кафедрой геофизических систем ФТФ НГТУ.

Тема диссертации утверждена 6 февраля 2025 года на заседании Ученого совета ИНГГ CO РАН, протокол №1.

Материалы диссертации представлены соискателем на заседании Учёного совета ИНГГ СО РАН 17 октября 2025 г., протокол № 9.

присутствовали:

Члены Учёного совета: акад. РАН д.т.н. М.И. Эпов, чл.-корр. РАН В.Н. Глинских, чл.-корр. РАН Б.Л. Шурыгин, чл.-корр. РАН Л.М. Бурштейн, д.т.н. И.Ю. Колесников, д.ф.-м.н. М.И. Протасов, д.ф.-м.н. В.Ю. Тимофеев, к.ф.-м.н. А.А. Дучков, д.ф.-м.н. Е.Ю. Антонов, д.г.-м.н. С.Б. Бортникова, д.т.н. Ю.И. Колесников, д.ф.-м.н. М.И. Протасов, д.г.-м.н. В.Д. Суворов, к.ф.-м.н. А.А. Дучков, д.т.н. В.М. Грузнов, д.г.-м.н. О.С. Дзюба, д.г.-м.н. Т.М. Парфенова, к.г.-м.н. М.А. Фомин, д.э.н. И.В. Филимонова, д.т.н. А.Г. Плавник, д.г.-м.н. О.Е. Лепокурова, д.ф.-м.н. Ю.П. Стефанов, д.г.-м.н. Н.К. Лебедева, д.г.-м.н. В.В. Лапковский, д.г.-м.н. А.Н. Фомин, к.г.-м.н. Б.М. Попов, к.г.-м.н. А.В. Левичева.

Сотрудники ИНГГ СО РАН: д.т.н. Е.В. Балков, д.г.-м.н. З.Н. Гнибиденко, д.г.-м.н. А.Д. Дучков, д.т.н. И.Н. Ельцов, д.г.-м.н. Н.О. Кожевников, д.г.-м.н. Е.А. Мельник, д.ф.-м.н. Г.М. Митрофанов, д.ф.-м.н. В.В. Плоткин, д.ф.-м.н. Б.П. Сибиряков, д.ф.-м.н. В.А. Чеверда, к.ф.-м.н. А.М. Айзенберг, к.ф.-м.н. А.Ю. Белинская, к.г.-м.н. А.В. Беляшов, к.г.-м.н. Л.Г. Вакуленко, к.т.н. К.Н. Даниловский, к.г.-м.н. П.Г. Дядьков, к.г.-м.н. А.В. Еделев, к.т.н. Ю.Г. Карин, к.г.-м.н. Т.В. Корнеева, к.э.н. М.В. Мишенин, к.т.н. Г.В. Нестерова, к.т.н. Г.Л. Панин, к.г.-м.н. О.П. Саева, к.т.н. А.Ю. Соболев, к.г.-м.н. Ю.К. Советов, к.ф.-м.н. Т.А. Ступина, к.т.н. И.И. Фадеева, к.т.н. К.В. Федин, к.г.-м.н. Е.В. Цибизова, к.г.-м.н. А.Е. Шалагинов, к.ф.-м.н. А.В. Яблоков, к.ф.-м.н. С.В. Яскевич, Е.А. Белоусова, П.А. Дергач, Р.Б. Джаркинов, М.С. Лапенко, А.Л. Лукьянова, Ю.А. Попп; д.г.-м.н. О.Л. Гаськова, д.г.-м.н. Е.П. Шевко, к.г.-м.н. М.П. Гора, к.г.-м.н. А.Я. Шевко (ИГМ СО РАН).

ВОПРОСЫ ЗАДАЛИ: акад. РАН д.т.н. М.И. Эпов, д.ф.-м.н. Б.П. Сибиряков, д.ф.-м.н. В.Ю. Тимофеев, д.ф.-м.н. В.А. Чеверда, к.г.-м.н. П.Г. Дядьков, к.ф.-м.н. А.А. Дучков, к.г.-м.н. Ю.К. Советов.

ВЫСТУПИЛИ: акад. РАН д.т.н. М.И. Эпов, д.т.н. Е.В. Балков, д.т.н. И.Н. Ельцов, д.г.-м.н. Н.О. Кожевников, д.ф.-м.н. Б.П. Сибиряков, д.ф.-м.н. В.Ю. Тимофеев, к.г.-м.н. Ю.К. Советов.

С диссертацией ознакомились специалисты-эксперты: д.г.-м.н., чл.-корр. РАН И.Ю. Кулаков, д.г.-м.н. Н.О. Кожевников, д.ф.-м.н. В.Ю. Тимофеев.

Члены экспертной комиссии дали **положительную оценку** диссертационной работе Мишениной С.П.

По итогам рассмотрения диссертационного исследования «Строение приповерхностных путей разгрузки гидротерм на примере термальных полей Курило-Камчатской островной гряды по данным геоэлектрики и геохимии» принято следующее заключение.

Объектом исследования являются активные термальные поля четырёх вулканических систем: кальдеры вулкана Узон, кальдеры Академии Наук, вулканов Мутновский и Эбеко.

Целью исследования является выявление приповерхностных путей, структуры и физико-химических параметров разгрузки гидротерм на примере термальных полей четырёх вулканических систем (Мутновский, Академии Наук, Узон, Эбеко).

Актуальность диссертационного исследования определена необходимостью внедрения метода электротомографии в комбинации с геохимическим опробованием для

описания строения термальных полей, а также при исследовании геотермальных месторождений. Дополнительной актуальной задачей является изучение подповерхностного пространства термальных полей, выявление закономерностей в структурах подводящих каналов для обеспечения безопасности туристических маршрутов.

Защищаемые научные результаты:

- 1. Грязевые котлы на термальных площадках кальдеры вулкана Узон разгружаются через серию трубообразных выходов, что установлено с помощью частотного зондирования. Построена геоэлектрическая модель, описывающая зональность внутренних частей термального поля, которая определяется, главным образом, соотношением жидкой и твёрдой фазы. Минерализация и уровень концентрации элементов в жидкой фазе зависят от доли флюида, взаимодействующего с вмещающими породами, что и определяет электропроводность системы «вода-порода».
- 2. По результатам интерпретации данных электротомографии установлено, что гейзеры Академии Наук (гидротермы системы озера Карымского) питаются из единой обводнённой линзы, расположенной на глубине от 5 до 20 метров; питающие каналы гидротерм Медвежьих и горячих выходов на полуострове Новогодний уходят корнями к общему источнику, тяготеющему к кратеру Токарева.
- 3. По данным частотного электромагнитного зондирования и электротомографии термальные растворы грязевых котлов на Донном фумарольном поле вулкана Мутновский с уникальным химическим составом имеют один питающий канал, прослеженный до глубины более 40 м. Разнообразие составов термальных разгрузок определяется вариациями соотношения флюид/метеорные воды и степенью взаимодействия растворов с вмещающими породами. Согласно построенной геоэлектрической модели, выходы ультракислых высокоминерализованных растворов грязевых котлов имеют чётко прослеживаемые стабильные структуры.

Научная новизна. Впервые на нескольких гидротермальных полях Камчатки для установления приповерхностного строения каналов разгрузки соискателем применён комплекс электрометрических методов (частотное зондирование, электротомография) и геохимическое опробование.

Построены геоэлектрические модели, описывающие конфигурации и структуры каналов гидротерм, определены их количественные характеристики (геометрические параметры, удельное электрическое сопротивление, минерализация и др.).

Для исследованных объектов установлено, что гидротермы различного типа и гидрохимического состава питаются из единого канала для каждого из термальных полей, а вариации их состава, вероятно, обусловлены взаимодействием системы «вода-порода», что подтверждается геохимическим опробованием.

Личный вклад соискателя заключается в непосредственном участии во всех полевых исследованиях: в качестве лаборанта полевых измерений in situ, а также камерального лаборанта (2006-2010 года); оператора электроразведочной станции в течение полевых сезонов 2010—2020 гг.; планировании и проведении полевых работ 2018, 2020 года.

Автором лично отобраны все пробы для химических анализов вещества, извлечены поровые растворы, выполнены основные замеры (рН, Еh, электропроводность, содержание основных катионов и анионов в растворах). Были обработаны, проанализированы и проинтерпретированы все представленные в диссертационной работе данные (результаты электротомографии и частотного зондирования, результаты геохимических анализов вещества растворов и поровых вод).

Подготовлены публикации по теме диссертации, написаны части глав в монографию* «Газогидротермы активных вулканов Камчатки и Курильских островов: состав, строение, генезис»: Глава 2, пп. Грязевые котлы Узона, Геофизические исследования кальдеры вулкана Узон; Глава 3, пп. Гидротермы в системе озера Карымское, Геофизическое зондирование кальдеры Академии Наук; Глава 4, пп. Гидротермы вулкана Мутновский, Гидрохимия Северо-Мутновского фумарольного поля, Редкоземельные элементы, Электроразведка на вулкане Мутновский, Северо-Мутновское фумарольное поле; Глава 5, пп. Гидрохимия кипящих котлов на фумарольных полях вулкана Эбеко, Электроразведка на вулкане Эбеко; Глава 6; Глава 7, пп. Озеро Кипящее, Озеро Горячее, Электротомография на термальных полях озера Кипящее.

*Бортникова С.Б., Бессонова Е.П., Гора М.П., Шевко А.Я., Панин Г.Л., Ельцов И.Н., Жарков Р.В., Котенко Т.А., Бортникова С.П., Манштейн Ю.А., Котенко Л.В., Козлов Д.Н., Абросимова Н.А., Карин Ю.Г., Поспеева Е.В., Казанский А.Ю. Газогидротермы активных вулканов Камчатки и Курильских островов: состав, строение, генезис // ИНГГ СО РАН — Новосибирск — 282с. — 2013.

Достоверность полученных результатов обеспечивается применением апробированного научно-методического аппарата. А именно:

- 1. приборная база современные сертифицированные приборы IRIS Syscal PRO Switch 48, Скала-48, Скала-48К12, ЭМС (Nemfis) для электроразведочных исследований; Эксперт—001 для определения рН, Еh, основных катионов и анионов in situ, HACH Fe2⁺ с соответствующим набором реагентов для определения двухвалентного железа in situ, IRIS Advantage (Аналитическая ошибка 10-15%) в АЦ ИГМ СО РАН для метода ICP-AES;
- 2. ПО для первичной фильтрации данных электротомографии SibER Tools, Xeris, ProsysII; ПО для решения обратных задач Res2DInv, Res3DInv.

Также достоверность полученных результатов обеспечивается моделированием, а именно решением прямой задачи в ПО Res2DMod для двумерных и в Res3Dmod для трёхмерных геоэлектрических моделей. Полученные результаты были сопоставлены с рядом публикаций других авторов и согласованы с теоретическими положениями и опубликованными по теме исследования работами.

Теоретическая и практическая значимость. Полученные и описанные в данной работе результаты комплексных геофизико-геохимических исследований позволили определить общие питающие каналы у каждого из термальных полей, в то время как в многочисленных, в том числе и современных исследованиях идёт речь об индивидуальных питающих каналах для каждого термопроявления ввиду разности их составов, уровней кислотности, окислительно-восстановительного потенциала и общей минерализации.

Практическая значимость данной работы заключается в том, что апробированный комплекс геофизико-геохимических исследований показал эффективность для изучения геотермальной деятельности. Результаты диссертации обосновывают неразрушающие способы контроля подповерхностного пространства, позволяющие обеспечить безопасность маршрутов туристических троп. Кроме того, результаты исследования данных систем могут использоваться для выбора точек бурения геотермальных скважин.

Апробация результатов работы. Результаты диссертационной работы докладывались на международных и всероссийских конференциях, семинарах: IV Всероссийский симпозиум по вулканологии и палеовулканологии (г. Петропавловск-Камчатский, 22-27 сент. 2009 года); Геодинамические процессы и природные катастрофы в Дальневосточном регионе: Научная конференция, посвящённая 65-летию ИМГиГ ДВО РАН (г. Южно-Сахалинск, 26-30 сент. 2011 г.); Интерэкспо ГЕО-Сибирь-2013. IX Международный научный

конгресс (Новосибирск, 15-26 апреля 2013 г.); Интерэкспо ГЕО-Сибирь-2014. Международный научный конгресс (Новосибирск, 8-18 апреля 2014 г.); Saint Petersburg 2014: Proceedings 6th Saint Petersburg International Conference and Exhibition 2014 - Geosciences-Investing in the Future (Saint Petersburg, Russia, 7-10 April 2014); IX Сибирская конференция молодых ученых по наукам о Земле (г. Новосибирск, 19-23 ноября 2018 г.); Интерэкспо ГЕО-Сибирь - "Недропользование. Горное дело. Направления и технологии поиска, разведки и разработки месторождений полезных ископаемых. Геоэкология": Экономика. международная научная конференция (г. Новосибирск, 20-24 апреля 2020 г.); Современные направления развития геохимии: Всероссийская конференция (с участием зарубежных ученых), посвященная 65-летию Института геохимии им. А.Л. Виноградова и 105-летию со дня рождения академика Л.В. Таусона (г. Иркутск, 21-25 ноября 2022 г.); Интерэкспо ГЕО-Сибирь - XIX Международный научный конгресс. Международная научная конференция "Недропользование. Горное дело. Направления и технологии поиска, разведки и разработки месторождений полезных ископаемых. Экономика. Геоэкология" (г. Новосибирск, 17-19 мая 2023 г.); EAGE. Инженерная и рудная геофизика 2023: Конференция и выставка (г. Санкт-Петербург, Россия, 15-19 мая 2023 г.).

Работа выполнена в Федеральном государственном бюджетном учреждении науки Институте нефтегазовой геологии и геофизики им. А.А. Трофимука Сибирского отделения Российской академии наук. Научные исследования проводились в соответствии с Планами научно-исследовательских работ ИНГГ СО РАН по проекту Программ фундаментальных исследований СО РАН проект FWZZ-2022-0029 «Эколого-экономические проблемы природно-техногенных систем: накопленный ущерб, ресурсы, возможности переработки и рекультивации» за 2019-2025 гг.

Содержание диссертации соответствует паспорту специальности 1.6.9 — «Геофизика» по геолого-минералогическим наукам, поскольку получены научные результаты, соответствуют направлениям исследований:

- п. 18. Использование геолого-геофизических данных для построения цифровых геологических, гидродинамических, геомеханических, геодинамических и иных моделей геологической среды и месторождений;
- п. 27. Применение геофизических методов при решении экологических задач и мониторинге состояния окружающей среды, включая многолетнемерзлые породы.

Диссертация соответствует требованиям Положения о присуждении ученых степеней, утвержденного Постановлением Правительства РФ от 24.09.2013 № 842 (ред. от 26.01.2023) и не содержит заимствованного материала без ссылки на авторов.

Материалы диссертации изложены в **25 научных работах**, из них **7 статей в ведущих рецензируемых научных журналах из перечня ВАК категории К1** Белого списка, 18 — материалы конференций и семинаров.

Основные публикации:

- 1. **Mishenina S.P.**, Shevko A.Ya., Shevko E.P., Gora M.P. Study of the Bottom Sediments Composition in the Volcanic Thermal—Seawater Mixing Zone // ISSN 1819-7140, Russian Journal of Pacific Geology, 2025, Vol. 19, No. 6, pp. 695–701. DOI: 10.1134/S1819714025700459 (готовится к публикации в ноябре 2025 года)
- 2. Батанов Ф.И., Абкадыров И.Ф., Дегтерев А.В., Захаров С.М., **Коханова С.П.**, Новиков Ю.В., Пинегина Т.К., Разжигаева Н.Г., Хомчановский А.Л., Хубаева О.Р. Экспедиция "Итуруп 2022-2023": основные направления работ и предварительные результаты // Геосистемы переходных зон − № 1 (8) − С. 47-55 − 2024. **(К1)**

- 3. Shevko E.P., Gora M.P., Kokhanova S.P., Panin G.L. Thermal water formation in present-day active volcanoes: a case study of the Golovnin caldera (Kunashir Island, Kuril Islands) // Russian Journal of Pacific Geology TOM 17 NO 1 C. 90-100 2023. (K1)
- 4. Шевко Е.П., Гора М.П., **Коханова С.П.**, Панин Г.Л. Формирование состава термальных вод современных активных вулканов на примере кальдеры Головнина (о. Кунашир, Курильские острова) // Тихоокеанская геология том 42 № 1 С. 100-111 2023. **(К1)**
- 5. **Kokhanova S.**, Kucher D., Volynkin S. Geophysical and geochemical studies on an active volcano (Ebeko volcano, Paramushir Island) // Reliability: Theory and Applications τ 0 τ 0 τ 0 τ 0 τ 0 τ 0. 357-360 2022. **(K1)**
- 6. Shevko E.P., Bortnikova S.B., Abrosimova N.A., Kamenetsky V.S., **Bortnikova S.P.**, Panin G.L., Zelenski M. Trace Elements and Minerals in Fumarolic Sulfur: The Case of Ebeko Volcano, Kuriles // Geofluids том 2018 2018. **(K1)**
- 7. Панин Г.Л., Гора М.П., **Бортникова С.П.**, Шевко Е.П. Подповерхностная структура Северо-Восточного фумарольного поля вулкана Эбеко (о. Парамушир) по данным геоэлектрических и геохимических исследований (Курильские острова) // Тихоокеанская геология том 34 N = 4 C. 67-85 2015. **(К1)**

Наиболее значимые доклады на конференциях:

- 1. Коханова С.П., Волынкин С.С., Цибизова Е.В. Результаты электротомографии на термальных полях вулкана Баранского, о. Итуруп, Южные Курилы // EAGE. Инженерная и рудная геофизика 2023: Сборник материалов конференции и выставки (г. Санкт-Петербург, Россия, 15-19 мая 2023 г.) ООО "ЕАГЕ ГЕОМОДЕЛЬ" СПб С. 339-341 2023
- 2. Коханова С.П., Пыряев А.Н., Волынкин С.С. Обсуждение источника микроэлементов в термальных растворах активных вулканов Камчатки и Курильских островов на основе геохимических и изотопных данных // Современные направления развития геохимии: Материалы Всероссийской конференции (с участием зарубежных ученых), посвященной 65-летию Института геохимии им. АЛ. Виноградова и 105-летию со дня рождения академика Л.В. Таусона (г. Иркутск, 21-25 ноября 2022 г.) Изд-во Института географии им. В.Б. Сочавы СО РАН Иркутск С. 247-249 2022
- 3. Грахова С.П., Бортникова С.Б., Панин Г.Л. Результаты трехмерной электротомографии кратера Токарева (Карымский вулканический центр, Камчатка // Интерэкспо ГЕО-Сибирь "Недропользование. Горное дело. Направления и технологии поиска, разведки и разработки месторождений полезных ископаемых. Экономика. Геоэкология": Материалы XVI международной научной конференции (г. Новосибирск, 20-24 апреля 2020 г.) ИНГГ СО РАН Новосибирск С. 373-384 2020
- 4. Грахова С.П., Ельцов И.Н., Фаге А.Н. Комплексное описание геотермальных полей вулканов Мутновский и Эбеко на основе геохимических и геофизических исследований // ІХ Сибирская конференция молодых ученых по наукам о Земле (г. Новосибирск, 19-23 ноября 2018 г.): Материалы конференции ИПЦ НГУ Новосибирск С. 150-152 2018
- 5. Bortnikova S.P., Yeltsov I.N., Faguet A.N., Fadeev D.I. Geoelectric Models of Kamchatka Active Volcanic Regions According to the Near-surface Geoelectric [Электронный ресурс] // Saint Petersburg 2014: Proceedings 6th Saint Petersburg International Conference and

- Exhibition 2014 Geosciences- Investing in the Future (Saint Petersburg, Russia, 7-10 April 2014) Saint Petersburg 10c. 2014
- 6. Бортникова С.П., Ельцов И.Н. Структура подводящих каналов термальных Мутновский по геофизическим, источников вулкана геохимическим петрофизическим данным // Интерэкспо ГЕО-Сибирь-2013. IX Междунар. науч. (Новосибирск, 15-26 апреля 2013 г.): Междунар. науч. "Недропользование. Горное дело. Новые направления и технологии поиска, разведки и разработки месторождений полезных ископаемых. Геоэкология": Сб. материалов в 3 т. – СГГА – Новосибирск – том Т. 3 – С. 185-190 – 2013
- 7. Бортникова С.П., Ельцов И.Н., Панин Г.Л., Нестерова Г.В., Ковбасов К.В. Электропроводность вулканических образований по результатам электротомографии и петрофизическим оценкам // Геодинамические процессы и природные катастрофы в Дальневосточном регионе: Науч. конф., посвящ. 65-летию ИМГиГ ДВО РАН (г. Южно-Сахалинск, 26-30 сент. 2011 г.): Тез. докл. Южно-Сахалинск С. 9-10 2011
- 8. Бортникова С.Б., Бессонова Е.П., Гавриленко Г.М., Бортникова С.П., Манштейн Ю.А., Манштейн А.К., Кирюхин А.В., Кузьмина А.А., Котенко Т.А. Металлоносность термальных растворов активных вулканов как отражение их генезиса (Южная Камчатка, Парамушир, Россия) // Вулканизм и геодинамика: Материалы IV Всероссийского симпоз. по вулканологии и палеовулканологии (г. Петропавловск-Камчатский, 22-27 сент. 2009 года) ИВиС ДВО РАН Петропавловск-Камчатский том Т. 2 С. 704-708 2009

Текст диссертации проверен в системе «Антиплагиат. Эксперт» и **установлено**, что оригинальность текста с учётом самоцитирования — 92,5 %; **диссертация соответствует** всем требования п.14 «Положения о присуждении ученых степеней»:

- соискателем сделаны ссылки на все источники заимствования материалов, фактов некорректного цитирования или заимствования без ссылки на соавторов в тексте диссертации и автореферате не обнаружено;
- сведения, представленные соискателем, об опубликованных им работах, в которых полностью изложены основные научные результаты диссертации, достоверны;
- По итогам обсуждения принято следующее заключение: Диссертационная работа Мишениной Софии Павловны «Строение приповерхностных путей разгрузки гидротерм на примере термальных полей Курило-Камчатской островной гряды по данным геоэлектрики и геохимии» рекомендуется к защите на соискание ученой степени кандидата геолого-минералогических наук по специальности 1.6.9. «Геофизика».

Заключение принято на заседании Учёного совета Федерального государственного бюджетного учреждения науки Института нефтегазовой геологии и геофизики им. А. А. Трофимука Сибирского отделения Российской академии наук. Присутствовало на заседании 27 чел. Результаты голосования: «за» -27 чел., «против» -0 чел., «воздержалось» -0 чел., протокол \mathbb{N}_2 9 от 17 октября 2025 г.

Заключение оформила: ученый секретарь ИНГГ СО РАН, к.г.-м.н.

Яме А.В. Левичева